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In this paper, a simple analytical model is developed to determine the adhesive shear 
strain distribution of a tubular adhesive scarf joint loaded in tension. The approach is 
an extension of the original well-recognized Volkersen's shear lag analysis for a shear 
loaded joint, which is frequently applied to adhesively-bonded joints. A mathematical 
representation consisting of linear and exponential functions is employed to model the 
elastic- plastic behavior commonly observed in structural adhesives. The governing 
equation is found to be in the form of a non-linear second-degree ordinary differential 
equation with variable coefficients. A numerical method required for solving this equa- 
tion is also introduced. Numerical predictions of shear strain distributions are compared 
with results from non-linear Finite Element Analysis (FEA), utilizing the commercially 
available software, ANSYS 5.6, a general-purpose software system. I t  is shown that both 
the linear and non-linear approximate solutions are closely comparable with the FEA 
results for a 10"-scarf angle and elastic isotropic adherends. In concurrence with previous 
work on flat adherends, the present work demonstrates that the scarfjoint develops more 
uniform shear stress and strain distributions with a consequent reduction in peak values 
than those for the conventional lap joint. In contrast, the conventional lap joint with the 
equivalent bonded surface area experiences a more substantial elastic trough, which can 
provide a more stable configuration for, sustained long term loading applications. 
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behavior; Linear-exponential representation; Non-linear FEA 

*Address for correspondence: Indigo Systems Corporation, 5385 Hollister Avenue, 

Corresponding author. Tel.: 805-893-338 I ,  Fax: 804-893-8651, e-mail: kedward@ 
Santa Barbara, CA 931 11, USA. 

engineering.ucsb.edu 

265 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
4
4
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



266 V. NGUYEN A N D  K. T. KEDWARD 

INTRODUCTION 

Adhesive bonding has increasingly been selected as an attractive 
method for joining critical mechanical components and structures. It 
exhibits many advantages such as lighter weight, more uniform stress 
distributions, smoother load transfer and, potentially, longer fatigue 
life over other traditional joining methods. In joining tubular com- 
ponents, adhesive bonding is even more appealing, since it eliminates 
complex machined features that are necessarily prepared for mechan- 
ical fasteners. For the last four decades, numerous adhesive bonding 
projects have been conducted in both theoretical and experimental 
fields. However, significantly less effort has been expended in adhesive 
bonding researches of tubular joints, with or without considering 
the non-linearity of an adhesive, relative to that of flat lap joints. 
Figure 1 depicts a simple representation of the tubular scarf joint 
with, its geometrical joint parameters, that is investigated in this 
study. 

The first analytical treatment of a general adhesive scarf joint was 
proposed by Lubkin [ I ]  for an ideally sharp, flat scarf joint loaded 
in tension with assumptions of zero bending moments and a 
uniform state of stress and based on linear adhesive characteristics. 
Lubkin pointed out that no stress concentrations were found at the 

),/ 

FIGURE 1 Scarf joint geometry, joint parameters, and loading configurations. 
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TUBULAR ADHESIVE SCARF JOINTS 267 

two joint terminations and that the theory was valid at any angle 
if similar-material adherends were used. For dissimilar materials, 
it was also claimed that there existed an angle in which Lubkin’s 
theory would hold. Adams and Peppiatt [2] employed Finite Ele- 
ment Analysis (FEA) utilizing 8-node iso-parametric elements and 
linear elasticity to analyze a tubular scarf joint, referenced as a 
tapered joint, in both tension and torsion. In 1990, Chen and Cheng 
[3] tried to resolve Thein’s [4] plane stress scarf joint problem using 
linear elasticity theory and the variational principles of complemen- 
tary energy. New criteria were introduced to replace Lubkin’s 
criteria for uniform stress state. Periodically, between 1973 and 
1981, Hart-Smith [5 ,6 ]  proposed and refined an entirely different 
approach to investigate analytically a flat scarf joint in tension. He 
developed a method to compute the shear stress distributions in the 
adhesive of a multiple-step flat lap joint. The method is based on the 
shear lag theory that had been introduced by Volkersen [7] for shear 
stress calculations of a single flat lap joint. By increasing the number 
of steps to infinity, the scarf joint solution, in theory, could even- 
tually be obtained by iterative techniques. 

Most studies have assumed a linear elastic behavior for structural 
adhesives while most adhesives, either ductile or brittle, exhibit some 
form of non-linearity especially when subjected to shear loads. Some 
treatments of adhesive non-linearity, however, have been proposed 
over the years. Hart-Smith [6,8] extended a Iinear-elastic-perfectly- 
plastic model. The Engineering Services Data Units (ESDU) in the 
United Kingdom [9] and Hughes Aircraft Company [lo] employed 
a piecewise-linear approximation. Nagaraja and Alwar [ 1 I ]  used 
non-linear FEA, and Adams and Mallick [I21 introduced the 
Effective Modulus Method. Hart-Smith, ESDU and Hughes Aircraft 
have modeled a non-linear adhesive as an elastic-plastic material 
with different idealizations of shear stress - strain behaviors. These 
properties are typically measured using a thick adherend coupon 
according to ASTM-D-5656 in conjunction with test with a KGR 
extensometer [13- 161 or a pure shear test of a cast-and-machined 
cylindrical “hour-glass’’ shaped specimen [ 171. Conversely, non-linear 
FEA method and Effective Modulus Method require informa- 
tion from the uniaxial stress - strain relationship that is usually 
obtained by testing the molded bulk form of an adhesive in tension, 
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268 V. NGUYEN AND K. T. KEDWARD 

ASTM-D-638, or in compression, ASTM-D-695. When being tested 
in a uniaxial tension test, an adhesive is significantly more sensitive 
to defects and voids than in a shear test, which reflects real service 
conditions. Therefore, it is believed that as an adhesive is primarily 
loaded in shear except at the terminations, the shear data are more 
appropriate for supporting shear strain calculations and for strength 
predictions than the uniaxial data. If required for FEA, an equi- 
valent uniaxial stress - strain relationship based on the adhesive shear 
behavior and Von-Mises’s combined-stress criteria should be estab- 
lished and employed. 

Today, Finite Element Analysis (FEA), as a widely-used, numeri- 
cally approximate method, has become a very powerful tool for the 
study of adhesive joints. However, FEA can be quite expensive in 
terms of time and labor to set up and to execute since it usually 
requires a new computer run for each change in value of any param- 
eters involved for a parametric study. It is even significantly more 
time-consuming when adhesive non-linearity is involved. Therefore, 
a simple numerical method based on an analytical treatment can 
be found useful and quite efficient in this problem for design and 
analysis purposes. One-dimensional modeling and analysis of a 
tubular scarf joint loaded in tension are performed and presented. In 
addition, a non-linear representation of an adhesive will also be 
proposed and introduced into the joint modeling. Nevertheless, FEA 
is still considered as a highly acceptable tool for the verification of an 
analytical study or for problems that preclude the application of 
analytical solutions. Moreover, the method has become a standard for 
mechanical engineering analyses and for verification of approximate 
analytical solutions. Thus, in this paper non-linear Finite Element 
Analyses is employed to access the developed theory. 

DERIVATION OF GOVERNING EQUATION 

It is assumed that the non-linear characteristic of an adhesive 
illustrated in Figure 2 has the stress-explicit form of a combination 
of linear and exponential functions as follows: 
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TUBULAR ADHESIVE SCARF JOINTS 269 

FIGURE 2 Proposed linear and exponential idealization of an adhesive loaded in 
shear. 

then the initial shear modulus, G,, that is the initial gradient of the 
function at y = 0, is related to two functional coefficients, Bo and E l ,  in 
Eq. (1) as 

Three fitting parameters are required to represent and fully define a 
specific adhesive system. In a special case observed for many ductile 
adhesives, i.e., when Bo approaches 0, the above function just can be 
simply reduced to 

where E l  =can be seen as the ultimate stress of the adhesive as 
illustrated in Figure 3. On the other hand, as E l  approaches 0, the 
adhesive becomes linear elastic represented with the usual linear shear 
stress - strain relationship 

7- = Guy (4) 

Figure 4 depicts infinitesimal elements of a scarf joint in tension. 
The figure is grossly exaggerated for clarity. Assumptions made in 
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270 V. NGUYEN AND K. T. KEDWARD 

-- Y 
FIGURE 3 Proposed linear and exponential idealization of an adhesive loaded in 
shear. 

N <- 

FIGURE 4 Infinitesimal elements in tension 

the derivations are: 

( I )  Adhesive is homogeneously isotropic and its behavior is described 

(2) Adhesive is relatively thin and flexible. 
by Eq. (1). 
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TUBULAR ADHESIVE SCARF JOINTS 27 1 

(3) Uniform distribution of shear strain across the adhesive thickness. 
(4) Adherends are homogeneously isotropic and linearly elastic. 
( 5 )  Hoop stress and deformation of the tubular adherends have 

negligible influence on the adhesive response. 
(6) Neither axial tensile stresses nor axisymmetric bending is devel- 

oped in the adhesive, based on the rather low adhesive modulus 
relative to the adherend modulii. 

(7) Shear lag theory and differential strains are extended to  include 
adhesive nonlinearity. This means only longitudinal tensile defor- 
mations in the tapered adherends and shear deformations in the 
adhesive layers are considered. 

Consider the equilibrium condition of adherend 1; the following 
expressions can be obtained 

- N I  + N I  + dNI - ra2rrdx cos a - ua2rrdx sin a M 0 ( 5 )  

-ra2rrds sin a - ua2rrdx cos a M 0 (6) 

or 

--- - ra cos a + ua sin a 
dx 2rr 

dNI 1 
(7) 

ra sin a M cr, cos a (8)  

Adhesive shear deformation is approximated as 

1 
Ta 

"la = - ( u ,  - u*)  cosa  (9) 

Since adhesive thickness is assumed sufficiently thin and flexible that 
it carries negligible axial load, at any cross section, equilibrium con- 
siderations yield the following relationship: 

N = N I  t N2 (10) 

Differentiation of Eq. (9) with respect to x gives 
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212 V. NGUYEN A N D  K.  T. KEDWARD 

Further differentiation of Eq. (1 1) in conjunction with Eq. (10) leads to 
the expression 

where 

r=r,-xtan(Y 

A l  = ~ ( 4  - 3)  and A2 = 7r(? - r:) 

drl and p = -  v=-+- 
AiEi A2E2 dx 

1 1 

Substitution of Eqs. (7) and (1 1) into Eq. (12) leads to the governing 
equation in the form of a second-degree ordinary differential equation 
(ODE) 

d2ya 
dx2 17 dx ta  

p dya + 27rq cos a - = -- ( T ~  cos (Y + ou sin a)  

I d A 2  NCOS(Y + -+-- ~ (: A2 dx ) taA2E2 

Boundary conditions for this ODE are 

Substitution of the above boundary conditions into (1  1) yields 
Neumann boundary conditions, which are given in terms of deri- 
vatives at boundaries 

It should be noted that both T, and 0, in the ODE Eq. (13) are 
functions of x. Introducing the non-linear adhesive Eqs. (1) and (8) 
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TUBULAR ADHESIVE SCARF JOINTS 213 

into Eq. (1 3) appropriately, the following expression is attained: 

There are some unique characteristics associated with the derivation 
process and the governing equation itself that are highlighted below: 

( I )  The formulation is developed based on strain variables rather than 
stress variables and all stress parameters are retained until the shear 
stress - strain relationship is introduced. An explicit expression of the 
shear stresses was the motivation for this original approach that 
circumvents unnecessary manipulation of stress functions and permits 
representation of the non-linear function for the adhesive layer. The 
proposed idealization of the adhesive shear stress- strain relationship 
appears to work really well with the derivation scheme. 

( 2 )  It is readily observed that the adhesive thickness has not been 
included in calculations of A ,  and A2, since it is assumed to be 
relatively thin compared with the adherend sizes. The assumption is 
believed to have an insignificant effect on the values of A l  and 4. 
However, if required, the thickness can be easily incorporated. 

(3) The governing equation is found to be a boundary value problem, 
expressed in the form of a second-degree non-linear differential 
equation, with variable coefficients and derivative boundary condi- 
tions. Numerical methods are typically required since the solution of 
this particular type of equation is generally more complex and it  is 
not directly solvable. However, with a few modifications to existing 
methods, such as Runge-Kutta or Finite Difference, the solution is 
certainly attainable. 

(4) Two boundary conditions can be expressed mathematically in the 
manner due to Neumann, wherein strain gradients a t  both ends are 
known and individual strains are not. This approach enables the shear 
strain distributions of the adhesive joint to be intuitively approximated 
in a realistic manner without solving the equation. For instance, the 
strain distributions can be expressed as a continuous function with 
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274 V. NGUYEN AND K. T. KEDWARD 

opposite signs of the strain gradients at each end of the joint with the 
characteristic shape as illustrated in Figure 5 .  It is assumed that the 
adhesive joint has no disbonded areas that can affect the shear strain 
distributions. 

(5) Equilibrium Eqs. (5) and (6) ignore the bending couples, and the 
longitudinal stress acting on the adhesive element, as depicted in 
Figure 4, since the adhesive is assumed to be relatively thin and flexible. 
In addition, hoop stresses and radial displacements of adherends are 
also neglected. The introduction of these parameters would result in 
more complex mathematics and undermine the purpose of a simple 
approximation method. All = signs are used for Eqs. (5) and (6) to 
indicate that those are only approximated expressions. Later, non- 
linear FEA is employed for comparison. For scarf angles larger than 
lo", all assumptions must carefully be reexamined and other important 
parameters should also be included; otherwise, strain distributions can 
be seriously miscalculated. In practice however, to design a strong and 
efficient joint, a relatively small scarf angle is often selected between 4 
and 8", and typically about 5", although no rationale for the selections 
have been explicitly stated in the literature. 

(6)  Justifications for recently discussed assumptions are based on the 
nature of axisymmetric responses for the subject scarf configuration 
wherein the Poisson's ratio-circumferential strains are considered to be 

Y 

Yx=-, 

-C 0 C 

Y 

FIGURE 5 y as a continuous function of x and strain gradients as two boundary 
conditions. 
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TUBULAR ADHESIVE SCARF JOINTS 275 

minutely disrupted through the transition. Confidence in this rationale 
was reinforced by the correlation between the solutions for plane 
strain and axisymmetric FEA methods with identical mesh subdivi- 
sions for pertinent longitudinal sections pictorially shown in Figure 6. 

Solve BVP (19) with BC’s of(20a) and (20b). 
Then calculate strain gradient at x = c,  y,’(c) 

Guess a new values 5 of strain at x = -c I 
new value 5 with a rooting method 

Solve BVP (19) with BC’s of(20a) and (20b). 
Then calculate strain gradient at x = c, yc’(c) I 

4 lNol 

Solve Complete BVP (1 7)  

4 
FIGURE 6 Numerical scheme in solving governing Eq. (1  7) for determination of strain 
distributions. 
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216 V. NGUYEN AND K .  T. KEDWARD 

However, further scrutiny of these assumptions must be made for 
cases of widely dissimilar adherends or adherends that possess high 
degrees of anisotropy. 

NUMERICAL METHOD AND FINITE ELEMENT 
ANALYSIS (FEA) 

The derived governing equation is non-linear and contains variable 
coefficients; thus a solution is more conveniently obtained using a 
numerical technique. A numerically iterative method based on the 
Runge-Kutta method is employed since no direct treatment is appli- 
cable for this type of equation. A summary of how the proposed meth- 
od works is presented below. 

A general non-linear second-degree boundary value differential 
equation, such as Eq. (16), is given in the following expression 

Boundary conditions are given in terms of the derivatives at 
boundaries as 

The idea here is to guess an appropriate initial value of < at x = - c, 
the problem of solving Eq. (17) then becomes solving 

The new problem can be easily solved using the standard Runge- 
Kutta method with a predetermined step size of h.  The step size 
h can be established and optimized by trying a few numbers of 
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TUBULAR ADHESIVE SCARF JOINTS 217 

subdivisions to guarantee convergence and avoid solution sensitivity. 
Then the function value at the opposite end, namely r:(c), can be 
computed. If  the result is not suitably close to y ’ ( c )=$~~  a new [ is 
provided. The whole calculation starts over again. Basically, this is an 
attempt to solve the equation 

where 6 considered as an independent variable. Very often, and 
particularly for the type of non-linear problem found the present 
study, this equation is non-linear and may be solved by a standard 
root-finding method, such as Bisection Method, Secant Shooting 
Method or Newton’s Method. When the analysis is limited to 
essentially linear elasticity of an adhesive, it is then necessary to guess 
only two values of [s and the correct E can then be linearly inter- 
polated. A detailed summary of the entire numerical scheme is shown 
in Figure 7. 

Finite element software, ANSYS 5.6 [18], is employed to validate 
the proposed approximation method. All elements are chosen to be 
eight-node quadrilateral with nominal size dimension equal to one 
half of the adhesive thickness. The ANSYS Plane 183 axisymmetric 
element is selected. Figure 6 shows the bonded section of the modeled 
scarf joint with element distributions. The load is symmetrically dis- 
tributed to the joint as a uniform pressure applied to all elements at  
the ends. At all times, the adhesive is assumed to be isotropic. Besides 
the elastic modulus and the Poisson’s ratio, a uniaxial stress- strain 
characteristic curve is required. The characteristic curve is estimated 
using the Von Mises equivalent stress concept and shear stress - strain 
relationship. Consequently, this uniaxial curve is expected to exhibit a 
representative shear behavior, as the adhesive would be loaded in 
shear. The “Multi-linear Isotropic Hardening” option of ANSYS is 
selected for a possible large strain analysis. 

The method of solution selected is incremental. The number of 
sub-steps is set to be from a minimum of 5 lo a maximum of 50 with 
nominal steps of 10. Stress and strain outputs are obtained from 
all middle nodes of the adhesive layer. Both global x-y stresses and 
strains, produced by ANSYS 5.6 are converted into shear compo- 
nents for comparison, with calculations from the developed method. 
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V. NGUYEN A N D  K .  T. KEDWARD 

______, 

FIGURE 7 Finite element modeling of the bonded section. 

The shear strain conversion based on a simple strain transformation 
is as follows 

(22) yo = yv( cos *a - sin *a)  + 2 ( ~ ~  - E,) sin (Y cos (Y 

NUMERICAL EXAMPLE AND DISCUSSION 

Adherends chosen for the numerical analyses are aluminum alloy. 
Hysol EA9394, a twopart paste adhesive manufactured by Dexter 
Aerospace [16] is selected for bonding of the adherends. The adhesive 
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TUBULAR ADHESIVE SCARF JOINTS 279 

shear properties, which are obtained from the adhesive manufac- 
turer, are generated by a thick adherend shear test with 0.127mm 
(0.005 inch) adhesive thickness and aluminum adherends in accord- 
ance with ASTM D-5656. Data used for prediction based on both the 
approximate and FEA methods are as follows 

(1) Joint geometry 

Outside radius ro= 12.700mm (0.500inch) 
Inside radius 
Truncation 
Adhesive thickness 

ri = 9.525 mm (0.375 inch) 
t,. = 0.508 mm (0.020 inch) 
t, = 0. I27 mm (0.005 inch) 

Scarf angle a= 10" 

(2) Aluminum adherends 

Elastic modulus El  = E2 = 68.946GPA (10 Mpsi) 
Poisson's ratio V I  = ~2 = 0.33 

(3) Adhesive 

Elastic modulus 
Shear modulus 

E, = 4.206 GPA (0.61 Mpsi) 
E, = 1.448 GPA (0.21 Mpsi) 

The non-linear shear stress- strain equation used for the approxi- 
mate method is obtained by curve-fitting Eq. (1) using experimental 
data provided by the manufacturer and is plotted in Figure 8 

T = 3.4473257 + 51.709875( 1 - e-36.757) (23) 

The non-linear uniaxial stress- strain relationship used for FEA is 
derived from the equivalent stress concept as follows 

(T = 10.341975~ + 89.564130(1 - e-63.65E) (24) 

The detailed derivation is shown in Appendix I .  
Various load cases are analyzed, 1 1.12 KN (2500 Ibs), 22.24 KN 

(5000 Ibs) and 33.36 KN (7500 Ibs) of direct tensile loads. The total 
number of steps used for all numerical calculations based on the 
previously proposed method is selected to be 100. The final solutions 
are found by making a sufficient number of systematic guesses with an 
allowable convergence error of less than 1 YO. Since strain distributions 
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+- Shear Stress 
(Dexter) - Uniaxial Stress 

0 0.1 0.2 0.3 0.4 0.5 

Uniaxial and Shear Strains 

FIGURE 8 Shear and uniaxial stress- strain relationships of EA9394 adhesive. 

are continuous and strain values should vary between 0 and the 
absolute maximum strain, lyul for a practical problem, 0 and yu are 
chosen first as two initial guesses. Then subsequent guesses are 
selectively established using the Bisection Method. Typically, each 
guess takes approximately from four to seven seconds to complete in 
MATHCAD 8 software system [ 191. Two representative cases studied, 
i.e., a scarf and a lap joint configuration, both loaded at 22.24KN 
(5000 lbs),are displayed in Tables I and 11, respectively, where 

y( - c) = E is guessed strain at x = - c 
y’( - c) =+, is given strain gradient at x = - c 
y’(c) = +2 is given strain gradient at x = c 
y i (c)  is calculated strain gradient at x = c, based on guessed y( - c) and 
given y’( - c) 

In each table, the rationale of new guesses is clearly identified in the 
notes column. 

Finite Element Analyses are performed for the same number of load 
cases. Each non-linear analysis for tension requires a relatively 
extensive time period to reach the final solutions. Due to the fine 
FEA mesh size selection; only strain values at nodes at 1.27mm 
(0.05 inch) increments of the normalized length are plotted for clarity 
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TUBULAR ADHESIVE SCARF JOINTS 283 

except in the region of the joint terminations where more strain values 
are used. The approximate and FEA results in terms of shear stress 
and strain distributions are plotted in Figures 9, 10 and 1 1 .  Normal 
strain and stress magnitudes are assumed to be relatively small; thus, 
they are not considered in the comparison. 
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FIGURE 9 Strain and stress distributions of a 10"-scarf joint in tension with linearly 
elastic representation of adhesive EA9394. 
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FIGURE 10 Strain distributions of a IOO-scarf joint in tension with proposed non- 
linear representation of adhesive EA9394. 
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FIGURE 11 Stress distributions of a 10”-scarf joint in tension with proposed non- 
linear representation of adhesive EA9394. 

In general, adhesive shear strain distributions exhibit the same form 
of the continuous function as predicted earlier. Both the shear stress 
and the strain distributions look consistent and in good agreement 
with FEA results. Linear analyses underestimate the shear strains in 
the central region by about lo%, while in contrast, non-linear analyses 
overestimate the shear strains by about 8% when compared with the 
FEA results. Similar observations are also obtained near the joint 
terminations where the predictions based on linear shear strain 
analyses underestimate the strain values by 11 YO. The corresponding 
predictions based on non-linear shear strain analyses overestimate 
strain values by 2%. As a consequence, the non-linear analyses of 
shear strain generally provide more conservative predictions than the 
linear analyses. 

In all approximate solutions, shear strains and stresses do not 
approach zero a t  the joint terminations. This is theoretically reconcil- 
able and represents a classical limitation for all predictive methods 
based on the shear lag theory using differential strain assumptions. 
However, a tubular joint can be considered geometrically analogous to 
the double-lap joint in which eccentric bending is not a major concern 
due to symmetry. In addition, the approximate approach can be found 
useful for design purposes and for initial failure predictions by simply 
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TUBULAR ADHESIVE SCARF JOINTS 285 

neglecting the edge effect, which occurs only on the order of one 
adhesive thickness from the free edges. Generally, there exist a few 
disagreements between the developed theory and FEA in the numeri- 
cal examples but they are typically unsubstantial. Thus, the selected 
10"-scarf angle appears to be sufficiently small for the theory to be 
satisfactorily applicable. 

The linear analyses exhibit fairly small shear strains but exceeding- 
ly high shear stresses, shown in Figure 9, in comparison with the 
nonlinear analyses at  higher loads, shown in Figures 10 and 1 1 .  This 
is due to the assumption of a linear shear stress-strain relationship 
that results in overestimation of the adhesive's instantaneous shear 
modulus at  larger strain levels. On the other hand, when the adhesive's 
behaves nonlinearly, strains increase more rapidly with increasing load 
especially after passing the transition region where the stress- strain 
curve makes an abrupt change in slope. The change appears to occur 
at an absolute shear strain value in the region of 0.08 as seen in 
Figure 8. In practice, this transition strain value may be considered as 
an upper limit for a conservative joint design. The entire joint may not 
have completely failed as the maximum shear strain in the adhesive is 
reached but additional loading would not generally be recommended. 
This recommendation is to avoid the potential structural inctability 
resulting in large displacements that may contribute to catastrophic 
failure. Perhaps, if either the maximum shear stress or the maximum 
shear strain is established as the failure criterion, the alloption of a 
non-linear analysis is clearly preferred over a linear an:i'! sis as a more 
reliable approach for highly loaded joints. 

I t  is known that severe imbalance of the stiffness ) I  the adherends 
can cause the termination at the outside surface to sil'fer a relatively 
high shear strain level and fail prematurely while the rest of the joint 
and the other termination are still under relatively low shear strains. 
Thus, the full potential strength of the adhesive cannot be fully 
exploited. However, in these sample problems the joint imbalance is 
quite small as noted from parameters selected, i.e., A I E l  x A2E2. These 
terms are only inversely proportional to the square of the radius, 
respectively, when two adherend materials are identical as exemplified 
in this study. For dissimilar or thicker adherends, i t  may be critically 
important to design the joint properly so that the imbalance effect can 
be minimized, i.e., to adjust truncations at the joint terminations or to 
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286 V. NGUYEN AND K. T. KEDWARD 

arrange the stiffer adherend inside. It should be acknowledged that 
the numerical example was intentionally restricted to near-balanced 
adherends, i.e., adherends with the same modulus and geometry. The 
objective of the restriction was based on establishing an acceptable 
approximation, supported not only through correlation with FEA, but 
also in comparison with experimental work to be presented in a 
subsequent paper. However, the above theoretical formulation should 
provide a reasonable approximation for an unbalanced joint involving 
isotropic adherends with modest differences in modulii and geometry. 
In future research, further development work that could be applied 
non-isotropic adherends is also contemplated. 

The special case of a scarf joint having a = 0 is also investigated. 
This special case is actually a standard lap joint configuration. The lap 
joint with a lap length of 2c/cos(a) has the same bonded area as the 
I0"-scarf joint. Only the results of non-linear analyses based the 
proposed theory are presented. Shear strain and stress distributions 
produced by both cases are plotted in Figures 12 and 13 for the same 
three representative loads as previously exemplified. The 10"-scarf 
joint seems to be more efficient in terms of lower peak shear strains 
a t  the joint terminations and to exhibit more uniform shear strain 
distributions throughout. The maximum adhesive shear strains of the 

0.25 I I I I 1 
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0 
-1 -0.5 0 0.5 1 
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11.12 KN (S) 
...... 22.24 KN (S) 
- - . - 33.36 KN (S) 

22.24 KN (L) 
o ~ 33.36 KN (L) 

FIGURE 12 Strain distributions of 10"-scarf joint and lap joint in tension with 
proposed non-linear representation of adhesive EA9394. 
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-1 -0.5 0 0 5  1 

Normalized Distance, xlc 

11.12 KN (S) 

. . . . . . . 22.24 KN (S) 

_ -  - 33.36 KN (S) 
11.12 KN (L) 

o 22.24 KN (L) 
o 33.36 KN (L) 

FIGURE 13 Stress distributions of 10"-scarf joint and lap joint in tension with 
proposed non-linear representation of adhesive EA9394. 

lap joint are between 36 and 41% higher in value in the tension load 
case compared with those of the 10"-scarf joint. The shear strain 
concentrations of the lap joint, which are defined as the ratio of the 
strain and the average strain, are correspondingly higher. The shear 
stress distributions are not obviously distinguishable at the highest 
load, 33.36 K N  (7500 Ibs), between I OO-scarf and lap joints although 
the two strain distributions are significantly different. The observation 
is the indication of a greater insight to be gained from consideration of 
shear strain distributions rather than shear stress distributions. From 
this, it is recognized that the shear strain distributions can offer more 
guidance in the design and evaluation of predicted joint strength. 

Based on this study, a 10" scarf joint may not be the best choice for 
a design in which creep accumulation, not the maximum load, is a 
concern [6]. The reason is that in the adhesive the lowest shear stresses 
of the lap joint are always below the lowest shear stresses of the scarf 
joint as observed in Figures 12 and 13. The deep elastic troughs found 
in the shear stress distributions for lap joints can serve as an inhibitor 
to creep given that the central region remains in an essentially elastic 
state. In addition, normal stresses in a lap joint, which exist in  the 
vicinities of the joint terminations but quickly dissipate, may result in 
localized non-catastrophic damage only. In contrast, normal stresses 
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288 V. NGUYEN AND K. T. KEDWARD 

of a lo" scarf joint certainly exist along the entire lap length, although 
they are considered to be relatively small in this study. If sufficiently 
large, the normal stresses can interact with shear stresses to permit 
extensive propagation of initial damage near terminations. This propa- 
gation of damage may then lead to premature failure of the adhesive 
and an accompanying reduction in joint strength. 

CONCLUSION 

In this paper, a new approach for calculating non-linear shear strain 
and stress distributions in the adhesive of a tubular scarf joint sub- 
jected to a tension loading condition is proposed. This analytical 
model represents an extension of the well-established shear-lag theory 
using differential strain assumptions that were introduced by 
Volkersen and have been used in numerous adhesive joint researches 
for many years. There are a few known limitations associated with the 
non-linear adaptation of this theory; however, it is proposed that 
such limitations have insignificant effect on failure prediction and on 
distributions of shear strain and stress for the specific configuration 
considered. 

Another significant contribution of this study is the introduction of 
a non-linear elastic plastic idealization, which is adopted to model the 
shear behavior of the selected adhesive. The idealization is basically 
a combination of linear and exponential functions and is explicitly 
expressed in terms of stress. Indeed, the stress-explicit form of the 
adhesive idealization facilitates convenient derivation of the governing 
equation. The proposed form of adhesive nonlinearity allows the 
model to obey essentially linear elasticity at low loads and exponential 
plasticity at high loads, a typical characteristic observed for many 
adhesives as predominantly loaded in shear. 

Both linear and non-linear analyses are conducted. The shear strain 
and shear stress distributions in the adhesive predicted by the pro- 
posed theory have shown to be in acceptably close agreement with 
the FEA results. The 10"-scarf angle that is selected as the upper 
limit of analysis capability is found to be sufficiently small to justify 
application of the proposed theory. Linear analyses exhibit conserva- 
tive shear stress distributions while showing severely underestimated 
shear strain distributions in comparison with non-linear analyses which 
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TUBULAR ADHESIVE SCARF JOINTS 289 

can be recommended as a more reliable approach for design purposes. 
The 10"-scarf joint provides higher performance in static load with 
lower peak shear strains and more uniform shear strain distributions 
when compared with the lap joint. However, with the deep elastic 
trough in the middle of the joint and negligible normal stress 
throughout, the lap joint will typically be a better choice for a 
sustained loading condition. 

NOMENCLATURE 

Joint Geometry 

Scarf angle 
Adhesive thickness 
Truncation thickness 
Tube outside radius, inside radius 
Tube mean radius 
Cylindrical coordinates 
Half lap length in case of a truncated joint 
Bonded area 
Cross section area at x of adherend 1,  adherend 2 

Material Properties 

E l ,  E2 Elastic modulus of adherend 1, of adherend 2 
E,, G,  Elastic modulus, shear modulus of adhesive 
7, Ultimate shear stress of adhesive 
Y U  Ultimate shear strain of adhesive 

Mechanics 

N Total applied tensile load 
N I ,  N2 Tensile load on an infinitesimal slice at x on adherend 1, 

adherend 2 
T,, cr, Shearstress, normal stress in adhesive under tension 
Y,, E ,  Shear strain, normal strain in adhesive under tension 
u l ,  u2 Axial displacement of adherend 1, adherend 2 under 

tension 
E I ,  ~2 Axial shear strain of adherend I ,  adherend 2 under tension 
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Generic shear stress, shear strain 
Generic strain gradient, rate of change of strain gradient 
Exponential coefficient of an adhesive model 
Fitting coefficients of an adhesive model 
Simplification factors in governing equations 
Neumann boundary conditions 
Guessed boundary condition 
Calculated strain at x =  - c  
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APPENDIX I :  EQUIVALENT STRESS 
AND STRAIN DERIVATION 

The following derivation will generate a uniaxial stress strain curve 
from a shear stress strain curve measured in a shear test. This ensures a 
shear representative behavior to be carried into FEA calculations. In 
theory, a relationship between pure uniaxial tension (or compression) 
and pure shear of an isotropic material can be obtained by using the 
Von Mises equivalent stress concept. 

The definition of the equivalent stress based on Von Mises yield 
criterion is 

or 

When a material is subjected to uniaxial loading, either tension or 
compression, a, is 

When a material is subjected to pure shear loading, uJor T,~)  is 
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Comparison of Eqs. (A.3) and (A.4) leads to the expression 

ffx = &Txy (‘4.5) 

The Von Mises criterion may also be expressed in terms of strains as 

Eeq = Js&u&u 2 

or 

When a material is subjected to uniaxial loading, either tension or 
compression, E, is 

Eeq = E x  (A.8) 

When a material is subjected to pure shear loading, E, (or S,/2) 

Comparison of Eqs. (A.9) and (A.lO) leads to the expression 

(A.lO) 

By mapping Eqs. (AS) and (A.10) into Eq. ( I ) ,  a representative 
uniaxial stress- strain relationship can be found and utilized for FEA 
as follows: 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
4
4
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1


